TITRATIONS

An Introduction

Slide 2

It's your BIRTHDAY!

I'm going to make you birthday cupcakes. Every birthday cupcake has two candles in it, or:

1 cupcake + 2 candles → 1 birthday cupcake

Slide 3

It's all about relationships…

I have 12 candles – how many cupcakes do I have?

NONE! Or 10… or 24… or 1000.
If there is no relationship between the candles and the cupcakes, there is no restriction on the amount of either one!
A "reaction" creates a relationship between different things. In the case of my "birthday cupcakes", there is now a relationship between cupcakes, candles, and birthday cupcakes – BUT ONLY IF I DO THE REACTION!

Suppose I have a drawer full of candles…

I'm too lazy to count the candles. I'm making birthday cupcakes anyway, so I just start baking cupcakes and keep baking them until I run out of candles. I baked 13 cupcakes, then I ran out of candles. How many candles did I have?

You probably arrived at 26 candles without even getting out your calculator. That is correct!

\[
\frac{2 \text{ candles}}{1 \text{ cupcake}} = 26 \text{ candles}
\]
1 cupcake + 2 candles \rightarrow 1 birthday cupcake

The reaction establishes a fixed relationship between the NUMBER of each thing in the reaction.

If I know one of the things in the reaction, I know them all.

I made 14 birthday cupcakes...well, I must have had 14 cupcakes and 28 candles:

\[
\begin{align*}
1 \text{ cupcake} & \quad \rightarrow \quad 14 \text{ birthday cupcakes} \\
2 \text{ candles} & \quad \rightarrow \quad 28 \text{ candles}
\end{align*}
\]

The REACTION connects everything.

I have to DO the reaction for the relationship to be fixed.

If I DO the reaction, however, and know how much of anything was used, I know how much of everything was used.

I used 50 candles...well, I must have had 25 cupcakes.

I made 100 cupcakes...well, I must have had 50 candles.

That is a titration!

Titrations are used to figure out how much of one compound you have by REACTING it with another compound.

The stoichiometry of the reaction creates a fixed ratio between the two reactants. So if I know how much of one of them there is, I know how much of BOTH of them there are!
Slide 10

Known vs. Unknown

\[A + 2B \rightarrow C \]

Well, if I add "B" to the sample, what will happen?

If I add 'B' to the sample, it should form "C" but only if...

...I have "A"

Slide 11

So, I start with "5 As" in my beaker and then add B to it.

What happens?

Slide 12

After I add 2 Bs, I get one C...
Slide 13

After I add 4 Bs, I get two Cs...

Slide 14

After I add 6 Bs, I get 3 Cs...

Slide 15

After I add 8 Bs, I get 4 Cs...
Slide 16

A + 2B → C

After I add 10 Bs, I get 5 Cs...

Slide 17

A + 2B → C

After I add 1,000,000 Bs, I get 5 Cs.

As soon as I ran out of A, the amount of B becomes irrelevant! I can't make C without both A and B!

Slide 18

Completion of the Reaction

A + 2B → C

So, if I think A is there, I can add known amounts of B. If I form C, then there was A there. If I gradually add more known amounts of B until I stop forming C, then I'll know how much A was originally there.

How much?
Slide 19

Equivalence Point

A + 2 B → C

I stop making C when

Moles of B added = 2x moles of A original there!

This is called the equivalence point!

Slide 20

Titrations

ALL titrations work the same way:

You have an unknown amount of one compound (call it A).

You have a known amount of a different compound (call it B).

You know a chemical reaction that occurs between A and B.

Add B until no more reaction occurs.

The amount of A is stoichiometrically equivalent to B!

Slide 21

The “tough part”:

How do I know the reaction has stopped?

1. I get no new C.
2. I have no A left.
3. I have extra B left over.
Slide 25

Watch A:

B
A

2 A

Slide 26

Watch A:

B
A

1 A

Slide 27

Watch A:

B
A

0 A! I'm DONE!
Or you could watch B

Watch B:

A

B

0 B

Watch B:

A

B

0 B
Slide 34
Watch B:

Slide 35
Watch B:

Slide 36
Or you could watch C
Watch C:

Still 5 C! I'm DONE!

A and B are easier to watch…
...it's more obvious if there is none vs. some.
Acid/Base Titrations
How does this work for an acid/base titration?
What is the first thing we need to know?
EXACTLY! The Chemical Reaction

Acid-base Reaction
In an acid/base titration, the generic reaction is:

\[\text{H}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O} \]
\[\text{H}_3\text{O}^+ + \text{OH}^- \rightarrow 2 \text{H}_2\text{O} \]

An acid is a proton donor (H⁺)
A base is a proton acceptor, is it always an OH⁻?
Does it matter?

As I make water, by adding OH⁻ to H⁺ (or H⁺ to OH⁻), the pH changes.

How do I know that I’m done adding…?

When I reach “equivalence” (I’m “done”), the pH should be…

7 (for strong acids/bases)
Indicators of the endpoint

- You can use a pH meter to monitor pH.
- You can use chemical indicators to monitor pH. Some dyes change color when the pH changes. If you add a little bit of one of these dyes that changes color around pH = 7, then it will change color when you reach equivalence.

Watch B:

pH is low

Watch B:

pH is getting higher
Slide 52

Watch B:

B

A

pH is even higher

Slide 53

Watch B:

B

A

pH is even higher

Slide 54

Watch B:

B

A

pH is near 7
Slide 55

Watch B:

B

A pH is 7

Slide 56

Watch B:

B

A pH is over 7

Slide 57

pH vs. mL Base added

pH

mL OH- added
Slide 58

An example of titration.

I have a 25.00 mL sample of an acid of unknown concentration. After addition of 13.62 mL of a 0.096 M NaOH solution, equivalence was reached. What was the concentration of acid in the original wastewater sample?

Where do I start?

Slide 59

Chemical Reaction:

H⁺ + OH⁻ → H₂O

At equivalence...?

Moles of H⁺ = Moles of OH⁻ added

Slide 60

An example of titration.

I have a 25.00 mL sample of an acid of unknown concentration. After addition of 13.62 mL of a 0.096 M NaOH solution, equivalence was reached. What was the concentration of acid in the original wastewater sample?

What do I need to determine?

Moles of OH⁻ added!

How do I figure that out?

Molarity combined with volume!
The solution

13.62 mL NaOH = 0.01362 L NaOH added

1000 mL

0.096 M NaOH = 0.096 moles NaOH

1 L solution

0.096 moles NaOH × 0.01362 L = 1.308 × 10⁻³ moles NaOH

What does that number tell us?
How many moles of H⁺ were originally there!
1.308 × 10⁻³ moles NaOH added = 1.308 × 10⁻³ moles H⁺ in original sample

An example of titration.

I have a 25.00 mL sample of an acid of unknown concentration. After addition of 13.62 mL of a 0.096 M NaOH solution, equivalence was reached. What was the concentration of acid in the original wastewater sample?

1.308 × 10⁻³ moles H⁺ in original sample

Am I done?
Not quite. We need the concentration of acid:
How do I calculate that?
Molarity = moles/L

An example of titration.

I have a 25.00 mL sample of an acid of unknown concentration. After addition of 13.62 mL of a 0.096 M NaOH solution, equivalence was reached. What was the concentration of acid in the original wastewater sample?

1.308 × 10⁻³ moles H⁺ in original sample = 0.0523 M

0.02500 L original sample
Slide 64

Basically the end…

You can actually summarize this in an algebraic relationship… but IGNORE ME NOW if you understand the way we just did it.

Slide 65

Equivalence Point

If you have a reaction:

\[i_A A + i_B B \rightarrow \text{products} \]

One way of stating the molar relationship in the titration is:

\[i_B M_A V_A = i_A M_B V_B \]

\[M_A V_A = \left(\frac{i_A}{i_B}\right) M_B V_B \]

Where \(M \) = molarity and \(V \) = volume and \(i = \) stoichiometric coefficient

Slide 66

\[i_B M_A V_A = i_A M_B V_B \]

This really just summarizes the calculation we did in multiply steps last time:

\[M_A V_A = \text{moles A} \]

\[\text{moles B} = \frac{M_B V_B}{M_A V_A} \]

\[\text{moles B} = \frac{M_B V_B}{M_A V_A} \]

\[\text{moles A} \]
A little example

A 10.00 mL sample of waste water is titrated to its phenolphthalein endpoint by addition of 36.32 mL of 0.0765 M NaOH. What is the pH of the original waste water sample?

NaOH + H+ = Na+ + OH-

[OH-] = [NaOH]

H+ + OH- = H2O

1*36.32 mL * 0.0756 M = 1*10.00 mL * X M

X = 0.2745 M

pH = - log [H+]

Does the [H+] = [acid]? What if it’s a polyprotic acid?

0.2745 M of what?

Of [H+] – we reacted the waste water with OH-, all we know is the equivalent amount of H+ – which is all we need to know to get the pH

We don’t actually know what the acid (or acid(s)) were or what their concentrations are, we just know the H+. But that’s OK, the H+ is the active part of the acid!

pH = - log (0.2745 M)

pH = 0.56
Slide 70

Another Little Problem

Titration of 25.00 mL of a sulfuric acid solution of unknown concentration required 43.57 mL of 0.1956 M NaOH to reach equivalence. What is the concentration of the sulfuric acid?

What do you need to notice about this problem?
Sulfuric Acid (H$_2$SO$_4$) is a diprotic acid.

Slide 71

If it helps…

…write the balanced equation (a chemist would).

H$_2$SO$_4$ (aq) + 2 NaOH (aq) → Na$_2$SO$_4$ (aq) + 2 H$_2$O (l)

Slide 72

Stoichiometry ALWAYS Matters

1 * 43.57 mL * 0.1956 M = 2 * 25.00 mL * X M

X = 0.1704 M H$_2$SO$_4$

If you wanted to calculate the pH…?
You need to again consider stoichiometry: each H$_2$SO$_4$ gives 2 protons
Slide 73

\[2\,[H_2SO_4] = [H^+] \]
\[2 \times 0.1704 \text{ M} = 0.3408 \text{ M H}^+ \]
\[\text{pH} = -\log (0.3408) = 0.47 \]

Slide 74

Acid-base Reaction

Acid + Base \(\rightarrow \) H\(_2\)O + salt

HA + MB \(\rightarrow \) H-B + MA

An acid is a proton donor (H\(^+\))

A base is any proton acceptor – where'd the OH\(^-\) come from?

Slide 75

Acid-base Reaction

It could come from the base:

HCl + NaOH \(\rightarrow \) H\(_2\)O + NaCl

But, not all bases have an OH:

HCl + NH\(_3\) \(\rightarrow \)??

NH\(_4\) + H\(_2\)O \(\rightarrow \) NH\(_4\)OH

HCl + NH\(_4\)OH \(\rightarrow \) H\(_2\)O + NH\(_4\)Cl

You can always generate OH\(^-\) in water, because water can always act as an acid.
A little bitty problem...

A 10.00 mL sample of waste water is titrated to its phenolphthalein endpoint by addition of 36.32 mL of 0.0765 M NaOH. What is the pH of the original waste water sample?

(This is just another way to phrase the question.)

Solution

A 10.00 mL sample of waste water is titrated to its phenolphthalein endpoint by addition of 36.32 mL of 0.0765 M NaOH. What is the pH of the original waste water sample?

36.32 mL * 0.0756 M = 10.00 mL * X M

X = 0.2745 M

pH = -log [H⁺]

Does the [H⁺] = [acid]?

What if it’s a polyprotic acid?

0.2745 M of what?

Of [H⁺] – we reacted the waste water with OH⁻, all we know is the equivalent amount of H⁺ – which is all we need to know to get the pH
Slide 79

\[\text{pH} = - \log [H^+] \]
\[\text{pH} = - \log (0.2745 \text{ M}) \]
\[\text{pH} = 0.56 \]

Slide 80

Another Little Problem

Titration of 25.00 mL of an unknown sulfuric acid solution required 43.57 mL of 0.1956 M NaOH to reach equivalence. What is the concentration of the sulfuric acid?

What do you need to notice about this problem?

Sulfuric Acid (H$_2$SO$_4$) is a diprotic acid.

Slide 81

If it helps...

...write the balanced equation (a chemist would).

\[\text{H}_2\text{SO}_4(\text{aq}) + 2 \text{NaOH(\text{aq})} \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + 2 \text{H}_2\text{O(\text{l})} \]

This is sometimes written as a “net ionic equation”:

\[\text{H}^+(\text{aq}) + \text{OH}^-\text{(aq)} \rightarrow \text{H}_2\text{O(\text{l})} \]
Stoichiometry ALWAYS Matters

1 * 43.57 mL * 0.1956 M = 2 * 25.00 mL * X M

X = 0.1704 M H₂SO₄

If you wanted to calculate the pH…?

You need to again consider stoichiometry: each H₂SO₄ gives 2 protons.

2 [H₃SO₄] = [H⁺]

2 * 0.1704 M = 0.3408 M H⁺

pH = - log (0.3408) = 0.47

An example of titration.

I have a 25.00 mL sample of a wastewater. After addition of 13.62 mL of a 0.096 M NaOH solution, equivalence was reached. What was the concentration of acid in the original wastewater sample?
Slide 85

The solution

(13.62 mL) (0.096 M) = (25.00 mL) (X M)

Is this correct?
Units! Units! Units!
M = moles/L
If I want moles, I need to have Volume in L.
But, since the only different is 10\(^{-3}\), if I have V=mL,
then I have mmoles (10\(^{-3}\) moles) on each side.

Slide 86

The solution

(13.62 mL) (0.096 M) = (25.00 mL) (M\(_2\))

1.307 mmoles = 25.00 mL (M\(_2\))
M\(_2\) = 0.0523 M

Slide 87

Titration problem

A 25.00 mL sample of wastewater of unknown pH is titrated
with a standardized 0.1011 M NaOH solution. It takes
16.92 mL of the NaOH to reach equivalence. What is the
pH of the original wastewater sample?
Slide 88

\[M_{\text{NaOH}}V_{\text{NaOH}} = M_{\text{H}_2\text{SO}_4}V_{\text{H}_2\text{SO}_4} \]
\[(0.1011 \, \text{M})(16.92 \, \text{mL}) = M_{\text{H}_2\text{SO}_4}(25.00 \, \text{mL}) \]
\[M_{\text{H}_2\text{SO}_4} = 0.06842 \, \text{M} \]
\[\text{pH} = -\log [\text{H}^+] = -\log (0.06842) \]
\[\text{pH} = 1.16 \]

Slide 89

Another little problem

A 25.00 mL sample of wastewater of unknown pH is titrated with a standardized 0.1011 M H\(_2\)SO\(_4\) solution. It takes 16.92 mL of the sulfuric acid to reach equivalence. What is the pH of the original wastewater sample?

Slide 90

\[2 \, \text{OH}^- + \text{H}_2\text{SO}_4 = 2 \, \text{H}_2\text{O} + \text{SO}_4^{2-} \]
\[i_{\text{base}}M_{\text{OH}^-}V_{\text{OH}^-} = i_{\text{acid}}M_{\text{H}_2\text{SO}_4}V_{\text{H}_2\text{SO}_4} \]
\[(2)(0.1011 \, \text{M})(16.92 \, \text{mL}) = (1) M_{\text{base}}(25.00 \, \text{mL}) \]
\[M_{\text{base}} = 0.136 \, \text{M} \]
\[\text{pOH} = -\log [0.136] = 0.86 \]
\[\text{pH} = 14 - 0.86 = 13.14 \]
Weak acids

The pH of an acid/base titration at equivalence is not always 7. (I lied, I admit it!)

It's only 7 if it is a "strong acid" and a "strong base".

What does "strong" mean in this context?